skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chamberlain, Roger"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The development of FPGA-based applications using HLS is fraught with performance pitfalls and large design space exploration times. These issues are exacerbated when the application is complicated and its performance is dependent on the input data set, as is often the case with graph neural network approaches to machine learning. Here, we introduce HLPerf, an open-source, simulation-based performance evaluation framework for dataflow architectures that both supports early exploration of the design space and shortens the performance evaluation cycle. We apply the methodology to GNNHLS, an HLS-based graph neural network benchmark containing 6 commonly used graph neural network models and 4 datasets with distinct topologies and scales. The results show that HLPerf achieves over 10 000 × average simulation acceleration relative to RTL simulation and over 400 × acceleration relative to state-of-the-art cycle-accurate tools at the cost of 7% mean error rate relative to actual FPGA implementation performance. This acceleration positions HLPerf as a viable component in the design cycle. 
    more » « less
  2. Tiny machine learning (TinyML) is an essential component of emerging smart microcontrollers (MCUs). However, the protection of the intellectual property (IP) of the model is an increasing concern due to the lack of desktop/server-grade resources on these power-constrained devices. In this paper, we propose STML, a system and algorithm co-design to Secure IP of TinyML on MCUs with ARM TrustZone. Our design jointly optimizes memory utilization and latency while ensuring the security and accuracy of emerging models. We implemented a prototype and benchmarked with 7 models, demonstrating STML reduces 40% of model protection runtime overhead on average. 
    more » « less
  3. With the ever-growing popularity of Graph Neural Networks (GNNs), efficient GNN inference is gaining tremendous attention. Field-Programmable Gate Arrays (FPGAs) are a promising execution platform due to their fine-grained parallelism, low power consumption, reconfigurability, and concurrent execution. Even better, High-Level Synthesis (HLS) tools help bridge the gap between the non-trivial FPGA development efforts and rapid emergence of new GNN models. To enable investigation into how effectively modern HLS tools can accelerate GNN inference, we present GNNHLS, a benchmark suite containing a software stack for data generation and baseline deployment and FPGA implementations of 6 well-tuned GNN HLS kernels. 
    more » « less